gausplat_renderer/render/gaussian_3d/jit/kernel/transform/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
//! Transforming the points.
pub use super::*;
use burn::tensor::ops::{FloatTensorOps, IntTensorOps};
use bytemuck::{bytes_of, Pod, Zeroable};
/// Arguments.
#[repr(C, align(16))]
#[derive(Clone, Copy, Debug, Pod, Zeroable)]
pub struct Arguments {
/// $ 0 \sim 3 $
pub colors_sh_degree_max: u32,
/// $ \text{fl}_x = \frac{\text{im}_x}{2 \tan\left(\frac{\text{fov}_x}{2}\right)} $
pub focal_length_x: f32,
/// $ \text{fl}_y = \frac{\text{im}_y}{2 \tan\left(\frac{\text{fov}_y}{2}\right)} $
pub focal_length_y: f32,
/// $ \frac{\text{im}_x}{2} $
pub image_size_half_x: f32,
/// $ \frac{\text{im}_y}{2} $
pub image_size_half_y: f32,
/// $ p $
pub point_count: u32,
/// $ \frac{\text{im}_x}{\text{t}_x} $
///
/// $ \text{t}_x $ is the tile width.
pub tile_count_x: i32,
/// $ \frac{\text{im}_y}{\text{t}_y} $
///
/// $ \text{t}_y $ is the tile height.
pub tile_count_y: i32,
/// $ \tan\left(\frac{\text{fov}_x}{2}\right) \cdot (c_f + 1) $
///
/// $ c_f $ is [`FILTER_LOW_PASS`].
pub view_bound_x: f32,
/// $ \tan\left(\frac{\text{fov}_y}{2}\right) \cdot (c_f + 1) $
///
/// $ c_f $ is [`FILTER_LOW_PASS`].
pub view_bound_y: f32,
/// Padding.
pub _padding_1: [u32; 2],
/// $ V_p \in \mathbb{R}^3 $
///
/// It is the position in world space.
pub view_position: [f32; 3],
/// Padding.
pub _padding_2: [u32; 1],
/// $ M_v \in \mathbb{R}^{4 \times 4} =
/// \begin{bmatrix} R_v & T_v \\\ 0 & 1 \end{bmatrix} $
///
/// $ R_v \in \mathbb{R}^{3 \times 3} $ is the rotation
/// from world space to view space.
pub view_transform: [[f32; 4]; 4],
}
/// Inputs.
#[derive(Clone, Debug)]
pub struct Inputs<R: JitRuntime> {
/// $ C_{sh} \in \mathbb{R}^{m \times 3} $ of $ p $ points.
///
/// $ m $ is [`SH_COUNT_MAX`](crate::spherical_harmonics::SH_COUNT_MAX).
pub colors_sh: JitTensor<R>,
/// $ P \in \mathbb{R}^3 $ of $ p $ points.
pub positions_3d: JitTensor<R>,
/// $ R \in \mathbb{R}^4 $ of $ p $ points.
pub rotations: JitTensor<R>,
/// $ S \in \mathbb{R}^3 $ of $ p $ points.
pub scalings: JitTensor<R>,
}
/// Outputs.
#[derive(Clone, Debug)]
pub struct Outputs<R: JitRuntime> {
/// $ C_{rgb} \in \mathbb{R}^3 $ of $ p $ points.
pub colors_rgb_3d: JitTensor<R>,
/// $ \Sigma^{'-1} \in \mathbb{R}^{2 \times 2} $ of $ p $ points.
///
/// Inverse of the 2D covariance.
///
/// It can be $ \mathbb{R}^{3} $ since it is symmetric.
pub conics: JitTensor<R>,
/// $ P_v.z \in \mathbb{R}$ of $ p $ points.
pub depths: JitTensor<R>,
/// $ \neg \text{clamped}(C_{rgb}) \in \mathbb{R}^3 $ of $ p $ points.
pub is_colors_rgb_3d_not_clamped: JitTensor<R>,
/// $ [x_{\max}\ x_{\min}\ y_{\max}\ y_{\min}] $ of $ p $ points.
///
/// $ x, y \in \mathbb{N} $ are the tile indices.
pub point_tile_bounds: JitTensor<R>,
/// $ P^' \in \mathbb{R}^2 $ of $ p $ points.
pub positions_2d: JitTensor<R>,
/// $ P_v.xy / P_v.z \in \mathbb{R}^2 $ of $ p $ points.
pub positions_3d_in_normalized: JitTensor<R>,
/// $ r \in \mathbb{N} $ of $ p $ points.
pub radii: JitTensor<R>,
/// $ R_s \in \mathbb{R}^{3 \times 3} $ of $ p $ points.
pub rotations_matrix: JitTensor<R>,
/// $ T \in \mathbb{N} $ of $ p $ points.
pub tile_touched_counts: JitTensor<R>,
}
/// $ c_f $
pub const FILTER_LOW_PASS: f64 = 0.3;
/// Group size.
pub const GROUP_SIZE: u32 = 256;
/// Transforming the points.
///
/// For each one of the $ p $ points, do the following steps:
///
/// 1. Transform the 3D position [$ P $](Inputs::positions_3d) from world space to view space:
/// $$ P_v = R_v P + T_v \in \mathbb{R}^3 $$
///
/// 2. Perform viewing-frustum culling:
/// $$ \text{Exit if } P_v.z \notin \text{frustum.} $$
///
/// 3. Convert the rotation from quaternion [$ R $](Inputs::rotations)
/// to matrix [$ R_s $](Outputs::rotations_matrix):
/// $$ R = [x\ y\ z\ w] $$
/// $$ R_s = 2 \cdot \begin{bmatrix}
/// \- y^2 - z^2 + \frac{1}{2} & x y - w z & x z + w y
/// \\\ x y + w z & - x^2 - z^2 + \frac{1}{2} & y z - w x
/// \\\ x z - w y & y z + w x & - x^2 - y^2 + \frac{1}{2}
/// \end{bmatrix} $$
///
/// 4. Compute the 3D covariance matrix from the rotation and scaling [$ S $](Inputs::scalings)
/// using inverse single value decomposition (SVD):
/// $$ S_s = \begin{bmatrix}
/// S.x & 0 & 0
/// \\\ 0 & S.y & 0
/// \\\ 0 & 0 & S.z
/// \end{bmatrix} $$
/// $$ \Sigma = R_s S_s^2 R_s^T = (R_s S_s) (R_s S_s)^T \in \mathbb{R}^{3 \times 3} $$
///
/// 5. Project the 3D position [$ P $](Inputs::positions_3d) from view space
/// onto [screen space](Outputs::positions_2d)
/// using focal length [$ \text{fl} $](Arguments::focal_length_x)
/// and image size [$ \text{im} $](Arguments::image_size_half_x):
/// $$ P_v^' = \begin{bmatrix}
/// \frac{P_v.x}{P_v.z} \cdot \text{fl}_x
/// \\\ \frac{P_v.y}{P_v.z} \cdot \text{fl}_y
/// \end{bmatrix} + \begin{bmatrix}
/// \frac{\text{im}_x - 1}{2}
/// \\\ \frac{\text{im}_y - 1}{2}
/// \end{bmatrix} $$
///
/// 6. Project the 3D covariance matrix from world space
/// onto [screen space](Outputs::conics):
/// $$ J = d P_v^' / d P_v = \begin{bmatrix}
/// \frac{\text{fl}_x}{P_v.z} & 0 & - \frac{P_v.x}{P_v.z^2} \cdot \text{fl}_x
/// \\\ 0 & \frac{\text{fl}_y}{P_v.z} & - \frac{P_v.y}{P_v.z^2} \cdot \text{fl}_y
/// \end{bmatrix} $$
/// $$ C = \begin{bmatrix}
/// c_f & 0
/// \\\ 0 & c_f
/// \end{bmatrix} $$
/// $$ \Sigma^' = J R_v \Sigma (J R_v)^T + C \in \mathbb{R}^{2 \times 2} $$
///
/// 7. Estimate the maximum radius [$ r $](Outputs::radii) from the 2D covariance
/// using eigenvalue decomposition:
/// $$ |\Sigma^' - \lambda I| = 0 $$
/// $$ \lambda = \frac{\Sigma_{11}^' + \Sigma_{22}^'}{2}
/// \pm \sqrt{(\frac{\Sigma_{11}^' + \Sigma_{22}^'}{2})^2 - |\Sigma^'|} $$
/// $$ 0.9973 = \int_{-k}^{k} \exp(-\frac{x^2}{2}) dx $$
/// $$ r = k \sqrt{\lambda_{\max}} $$
///
/// 8. Compute the [tile bounds](Outputs::point_tile_bounds)
/// and touched tile count [$ T $](Outputs::tile_touched_counts)
/// using tile size [$ t $](Arguments::tile_count_x):
/// $$ [x_{\max}\ x_{\min}] =
/// \text{clamp}(\frac{[(P_v^'.x - r)\ (P_v^'.x + r)]}{t_x}) $$
/// $$ [y_{\max}\ y_{\min}] =
/// \text{clamp}(\frac{[(P_v^'.y - r)\ (P_v^'.y + r)]}{t_y}) $$
/// $$ T = (x_{\max} - x_{\min}) \cdot (y_{\max} - y_{\min}) $$
///
/// 9. Compute the viewing direction in world space
/// using view position [$ V_p $](Arguments::view_position):
/// $$ D_v = \frac{P - V_p}{| P - V_p |} \in \mathbb{R}^3 $$
///
/// 10. Transform the color from [SH](Inputs::colors_sh)
/// to [RGB](Outputs::colors_rgb_3d) space:
/// $$ D = f(D_v) \in \mathbb{R}^m $$
/// $$ C_{rgb} = D \cdot C_{sh} \in \mathbb{R}^3 $$
pub fn main<R: JitRuntime, F: FloatElement, I: IntElement, B: BoolElement>(
arguments: Arguments,
inputs: Inputs<R>,
) -> Outputs<R> {
impl_kernel_source!(Kernel, "kernel.wgsl");
// Specifying the parameters
let client = &inputs.colors_sh.client;
let device = &inputs.colors_sh.device;
// P
let point_count = arguments.point_count as usize;
let colors_rgb_3d =
JitBackend::<R, F, I, B>::float_empty([point_count, 3].into(), device);
let conics = JitBackend::<R, F, I, B>::float_empty([point_count, 3].into(), device);
let depths = JitBackend::<R, F, I, B>::float_empty([point_count].into(), device);
let is_colors_rgb_3d_not_clamped =
JitBackend::<R, F, I, B>::float_empty([point_count, 3].into(), device);
let point_tile_bounds =
JitBackend::<R, F, I, B>::int_empty([point_count, 4].into(), device);
let positions_2d =
JitBackend::<R, F, I, B>::float_empty([point_count, 2].into(), device);
let positions_3d_in_normalized =
JitBackend::<R, F, I, B>::float_empty([point_count, 2].into(), device);
let radii = JitBackend::<R, F, I, B>::int_empty([point_count].into(), device);
let rotations_matrix =
JitBackend::<R, F, I, B>::float_empty([point_count, 3, 3].into(), device);
let tile_touched_counts =
JitBackend::<R, F, I, B>::int_empty([point_count].into(), device);
// Launching the kernel
client.execute(
Box::new(SourceKernel::new(
Kernel,
CubeDim {
x: GROUP_SIZE,
y: 1,
z: 1,
},
)),
CubeCount::Static(arguments.point_count.div_ceil(GROUP_SIZE), 1, 1),
vec![
client.create(bytes_of(&arguments)).binding(),
inputs.colors_sh.handle.binding(),
inputs.positions_3d.handle.binding(),
inputs.rotations.handle.binding(),
inputs.scalings.handle.binding(),
colors_rgb_3d.handle.to_owned().binding(),
conics.handle.to_owned().binding(),
depths.handle.to_owned().binding(),
is_colors_rgb_3d_not_clamped.handle.to_owned().binding(),
point_tile_bounds.handle.to_owned().binding(),
positions_2d.handle.to_owned().binding(),
positions_3d_in_normalized.handle.to_owned().binding(),
radii.handle.to_owned().binding(),
rotations_matrix.handle.to_owned().binding(),
tile_touched_counts.handle.to_owned().binding(),
],
);
Outputs {
colors_rgb_3d,
conics,
depths,
is_colors_rgb_3d_not_clamped,
point_tile_bounds,
positions_2d,
positions_3d_in_normalized,
radii,
rotations_matrix,
tile_touched_counts,
}
}